Feasibility of On-Farm or Small Scale Oilseed Processing and Biodiesel Production

Philip Kenkel and Rodney Holcomb Department of Agricultural Economics Oklahoma State University

Background

- Ethanol boom has benefited corn producers and grainbelt landowners
- Many producers outside the "ethanol belt" are interested in participating in the biofuel economy
- This interest in value-added has spurred interest in small scale oilseed processing and biodiesel production

Why Biodiesel?

- Can be produced from a wide variety of feedstocks
- Farm diesel prices have increased over 300% since the mid 1990's and 100% in the last three years
- Fuel prices are only 10% of the production cost of most crops but are a visible component
- Several states have specific incentives for on-farm biofuel production

On-farm Oilseed Processing

- Crushing and biodiesel production are not technically complex and can be conducted at a farm scale level
- On-farm production eliminates marketing costs and issues with low local basis
- Transportation and retail margins are avoided for both crop and fuel
- Can these factors offset the economies of scale in processing??

Two Examples

- Baseline feasibility of 250,000 gallon/year plant based on the OSU Oilseed Crushing/Biodiesel Feasibility Template
- Results from on-farm demonstration project of 10,000 gallon year system.

Small Scale Oilseed Processing and Biodiesel Production

- Mechanical extraction technologies included cold press, steam pre-treated expeller and extruder-expeller.
- Heat increases extraction efficiency and can improve the protein and texture of the meal
- Extruder-expeller systems use friction to increase temperature to 135°C

Extruder Expeller

- After leaving the extruder the oil is immediately removed with a screw press
- Short dwell time improves the digestibility and quality of the meal and improves by-pass protein

Biodiesel

- The most common production process for biodiesel is base catalyzed transesterification
- Methanol or ethanol with potassium hydroxide or sodium hydroxide yields biodiesel and crude glycerol

Biodiesel Production

OSU Oilseed Processing and Biodiesel Production Feasibility Template

- Crushing only or crushing/biodiesel
- Up to three oilseed crops
- Baseline assumptions can be modified by the user
- Sensitivity analysis

Baseline Assumptions

Small Scale Oilseed Processing and Biodiesel Producton

Crushing Capacity	1/ton hour or 2,000 ton/Year
Biodiesel Production	250,000 gallons
Equipment Costs	\$342,000
Capital structure	50% debt- 7.5%
Canola price	\$.11
Sunflower price	\$.15
Soybean price	\$8.00

Baseline Assumptions Small Scale Oilseed Processing and Biodiesel Producton			
Extraction Efficiency	80%		
Biodiesel Price/gallon	\$3.00		
Meal Value/ton	\$300		
Oklahoma tax credits	\$.20/gallon		
Payroll and benefits/year	\$182,000		
Utilities/year	\$195,000		
Repairs, Maintenance and Insurance/year	\$23,000		

Table 1: Sensitivity of Canola Processing Return to Biodiesel Value						
Biodiesel Price	\$2.90	\$3.00	\$3.10	\$3.20	\$3.30	\$3.40
Internal Rate of Return	Negative	5.7%	15.7%	24.2%	40.2%	47.9%
Return on Assets	-3.3%	4.4%	12.1%	19.7%	27.4%	35.0%
Return on Equity	-6.4%	8.8%	24.2%	39.5%	54.8%	70.0%

Table 2: Sensitivity of Canola Processing Return to Meal Value

Meal Price	\$280	\$290	\$300	\$310	\$320	\$330
Internal Rate of Return	Negative	.3%	5.7%	10.7%	15.3%	19.6%
Return on Assets	-3.1%	.7%	4.4%	8.1%	11.9%	15.7%
Return on Equity	-6.2%	1.3%	8.8%	16.3%	23.8%	31.3%

Table 3: Brea	akeven Oils	eed Crop Valu	es at Various 1	Biodiesel Price	es
Biodiesel Price	\$2.50	\$2.75	\$3.00	\$3.25	\$3.5
Breakeven Canola Price \$/lb.	\$.082	\$.097	\$.113	\$.130	\$.146
Breakeven Sunflow er Price \$/lb	\$.074	\$.091	\$.108	\$.125	\$.143
Breakeven Soybean Price \$/bu.	\$5.3	\$6.00	\$6.70	\$7.40	\$8.10

Oklahoma On-Farm Example

- 70 acres of sunflowers
- 1,600 lb acre
- 3.55 gallons/cwt 67% extraction efficiency
- \$8,212 equipment cost
- 280 lbs or .14/tons per hour
- \$3.00 value for biodiesel
- \$100/ton value for meal
- \$1.20/gallon tax credits

Oklahoma On-Farm Example

- \$.11 sunflower value
- \$.094/Ib production cost
- 67% extraction efficiency
- 2,200 gallons of biodiesel produced
- 225 hours of operation
- \$8.50 hour labor

Cost Comparison: Small Scale Base-line with On-Farm	
Case Study	

	Baseline	On-farm
Sales (biodiesel, meal, tax credits)	\$4.66	\$4.54
Oilseed	\$2.52	\$2.58
Utilities	\$.78	\$.08
Methanol	\$.01	\$1.12
Labor	\$.66	\$.85
Depreciation	\$.12	\$.55
Interest	\$.04	\$.11
Net Income	\$.18	(\$1.38)
before taxes		

Conclusions

- Small scale crushing/biodiesel is marginally feasible.
 On-farm scale is not feasible at current prices
- Returns are sensitive to the farm level value (price) of biodiesel, meal value and value placed on crop
- On-farm processing of high oil content crops such as canola or sunflowers are marginally feasible
- At current soybean prices, feasibility of on-farm processing of soybeans would require biodiesel value above \$5/gallon and meal value remaining at historically high levels